etna.transforms.decomposition.SklearnPreprocessingPerIntervalModel#
- class SklearnPreprocessingPerIntervalModel(preprocessing: TransformerMixin)[source]#
Bases:
PerIntervalModel
SklearnPreprocessingPerIntervalModel applies PerIntervalModel interface for sklearn preprocessings.
Methods
fit
(features, target, *args, **kwargs)Fit preprocessing with given features and targets.
inverse
(features)Apply inverse transformation.
predict
(features, *args, **kwargs)Apply preprocessing to given features.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- Parameters:
preprocessing (TransformerMixin) –
- fit(features: ndarray, target: ndarray, *args, **kwargs) SklearnPreprocessingPerIntervalModel [source]#
Fit preprocessing with given features and targets.
- inverse(features: ndarray) ndarray [source]#
Apply inverse transformation.
- Parameters:
features (ndarray) – features to apply inverse transformation
- Returns:
features after inverse transformation
- Return type:
inversed data
- predict(features: ndarray, *args, **kwargs) ndarray [source]#
Apply preprocessing to given features.
- Parameters:
features (ndarray) – features to make preprocessing for
- Returns:
preprocessing’s prediction for given features
- Return type:
prediction
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )