etna.transforms.decomposition.RupturesChangePointsModel#
- class RupturesChangePointsModel(change_points_model: BaseEstimator, **change_points_model_predict_params)[source]#
Bases:
BaseChangePointsModelAdapter
RupturesChangePointsModel is ruptures change point models adapter.
Init RupturesChangePointsModel.
- Parameters:
change_points_model (BaseEstimator) – model to get change points
change_point_model_predict_params – params for
change_point_model.predict
method
Methods
get_change_points
(df, in_column)Find change points within one segment.
get_change_points_intervals
(df, in_column)Find change point intervals in given dataframe and column.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- get_change_points(df: DataFrame, in_column: str) List[Timestamp] [source]#
Find change points within one segment.
- get_change_points_intervals(df: DataFrame, in_column: str) List[Tuple[Timestamp | int | None, Timestamp | int | None]] [source]#
Find change point intervals in given dataframe and column.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )