etna.transforms.IQROutlierTransform#
- class IQROutlierTransform(in_column: str = 'target', ignore_flag_column: str | None = None, window_size: int = 10, stride: int = 1, iqr_scale: float = 1.5, trend: bool = False, seasonality: bool = False, period: int | None = None, stl_params: Dict[str, Any] | None = None)[source]#
Bases:
OutliersTransform
Transform that uses
get_anomalies_iqr()
to find anomalies in data.Create instance of
PredictionIntervalOutliersTransform
.- Parameters:
in_column (str) – Name of the column in which the anomaly is searching
ignore_flag_column (str | None) – Column name for skipping values from outlier check
window_size (int) – Number of points in the window
stride (int) – Offset between neighboring windows
iqr_scale (float) – Scaling parameter of the estimated interval
trend (bool) – Whether to remove trend from the series
seasonality (bool) – Whether to remove seasonality from the series
period (int | None) – Periodicity of the sequence for STL
stl_params (Dict[str, Any] | None) – Other parameters for STL. See
statsmodels.tsa.seasonal.STL
Methods
detect_outliers
(ts)Call
get_anomalies_iqr()
function with self parameters.fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.Backward compatibility property.
Backward compatibility property.
- detect_outliers(ts: TSDataset) Dict[str, Series] [source]#
Call
get_anomalies_iqr()
function with self parameters.
- fit(ts: TSDataset) OutliersTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
OutliersTransform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
iqr_scale
,trend
,seasonality
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )