etna.metrics.Metric#
- class Metric(metric_fn: MetricFunction, mode: str = MetricAggregationMode.per_segment, metric_fn_signature: str = 'array_to_scalar', **kwargs)[source]#
Bases:
AbstractMetric
,BaseMixin
Base class for all the multi-segment metrics.
How it works: Metric computes
metric_fn
value for each segment in given forecast dataset and aggregates it according to mode.Init Metric.
- Parameters:
metric_fn (MetricFunction) – functional metric
mode (str) –
“macro” or “per-segment”, way to aggregate metric values over segments:
if “macro” computes average value
if “per-segment” – does not aggregate metrics
metric_fn_signature (str) – type of signature of
metric_fn
(seeMetricFunctionSignature
)kwargs – functional metric’s params
- Raises:
NotImplementedError: – If non-existent
mode
is used.NotImplementedError: – If non-existent
metric_fn_signature
is used.
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
__call__
(y_true, y_pred)Compute metric's value with
y_true
andy_pred
.Attributes
This class stores its
__init__
parameters as attributes.Whether higher metric value is better.
Name of the metric for representation.
- __call__(y_true: TSDataset, y_pred: TSDataset) float | Dict[str, float] [source]#
Compute metric’s value with
y_true
andy_pred
.Notes
Note that if
y_true
andy_pred
are not sorted Metric will sort it anyway
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )