etna.transforms.LimitTransform#
- class LimitTransform(in_column: str, lower_bound: float | None = None, upper_bound: float | None = None, tol: float = 1e-10)[source]#
Bases:
ReversibleTransform
LimitTransform limits values of some feature between the borders (
lower_bound
-tol
,upper_bound
+tol
).If both
lower_bound
andupper_bound
are not set there is no transformationIf both
lower_bound
andupper_bound
are set apply
\[y = \log(\frac{x-(a-tol)}{(b+tol)-x}),\]If
lower_bound
is set andupper_bound
is not set apply
\[y = \log (x-(a-tol))\]If
lower_bound
is not set andupper_bound
is set apply
\[y = \log ((b+tol)-x)\]where \(x\) is feature, \(a\) is lower bound, \(b\) is upper bound, \(tol\) is offset.
For more details visit https://datasciencestunt.com/time-series-forecasting-within-limits/ .
Init LimitTransform.
- Parameters:
- Raises:
ValueError: – Some
in_column
features are less thanlower_bound
or greater thanupper_bound
.
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns:
Empty grid.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )