etna.transforms.SumTransform#
- class SumTransform(in_column: str, window: int, seasonality: int = 1, min_periods: int = 1, fillna: float = 0, out_column: str | None = None)[source]#
Bases:
WindowStatisticsTransform
SumTransform computes sum of values over given window.
Warning
This transform, applied to non-regressor column, generates non-regressor column. Apply it to regressor columns to get regressor columns too. In the majority of cases you need to generate regressor to use them in the future.
For example, apply this transform to target lags, not to target directly.
Init SumTransform.
- Parameters:
in_column (str) – name of processed column
window (int) – size of window to aggregate, if
window == -1
compute rolling sum all over the given seriesseasonality (int) – seasonality of lags to compute window’s aggregation with
min_periods (int) – min number of targets in window to compute aggregation; if there is less than
min_periods
number of targets return Nonefillna (float) – value to fill results NaNs with
out_column (str | None) – result column name. If not given use
self.__repr__()
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) WindowStatisticsTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) –
- Return type:
WindowStatisticsTransform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes only
window
parameter. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )