etna.experimental.classification.PredictabilityAnalyzer#
- class PredictabilityAnalyzer(feature_extractor: BaseTimeSeriesFeatureExtractor, classifier: ClassifierMixin, threshold: float = 0.5)[source]#
Bases:
TimeSeriesBinaryClassifier
Class for holding time series predictability prediction.
Note
This class requires
classification
extension to be installed. Read more about this at installation page.Init PredictabilityAnalyzer with given parameters.
- Parameters:
feature_extractor (BaseTimeSeriesFeatureExtractor) – Instance of time series feature extractor.
classifier (ClassifierMixin) – Instance of classifier with sklearn interface.
threshold (float) – Positive class probability threshold.
Methods
Analyse the time series in the dataset for predictability.
download_model
(model_name, dataset_freq, path)Return the list of available models.
dump
(path, *args, **kwargs)Save the object.
fit
(x, y)Fit the classifier.
Return the list of available models.
Transform the dataset into the array with time series samples.
load
(path, *args, **kwargs)Load the object.
masked_crossval_score
(x, y, mask)Calculate classification metrics on cross-validation.
predict
(x)Predict classes with threshold.
Predict probabilities of the positive class.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.NEGATIVE_CLASS
POSITIVE_CLASS
- analyze_predictability(ts: TSDataset) Dict[str, int] [source]#
Analyse the time series in the dataset for predictability.
- static download_model(model_name: str, dataset_freq: str, path: str)[source]#
Return the list of available models.
- fit(x: List[ndarray], y: ndarray) TimeSeriesBinaryClassifier [source]#
Fit the classifier.
- Parameters:
- Returns:
Fitted instance of classifier.
- Return type:
- static get_series_from_dataset(ts: TSDataset) List[ndarray] [source]#
Transform the dataset into the array with time series samples.
Series in the result array are sorted in the alphabetical order of the corresponding segment names.
- static load(path: str, *args, **kwargs)[source]#
Load the object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (str) –
- masked_crossval_score(x: List[ndarray], y: ndarray, mask: ndarray) Dict[str, list] [source]#
Calculate classification metrics on cross-validation.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )