etna.transforms.OneSegmentTransform#
- class OneSegmentTransform[source]#
-
Base class to create one segment transforms to apply to data.
Methods
fit
(df)Fit the transform.
fit_transform
(df)Fit and transform Dataframe.
Inverse transform Dataframe.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(df)Transform dataframe.
Attributes
This class stores its
__init__
parameters as attributes.- abstract fit(df: DataFrame)[source]#
Fit the transform.
Should be implemented by user.
- Parameters:
df (DataFrame) – Dataframe in etna long format.
- fit_transform(df: DataFrame) DataFrame [source]#
Fit and transform Dataframe.
May be reimplemented. But it is not recommended.
- abstract inverse_transform(df: DataFrame) DataFrame [source]#
Inverse transform Dataframe.
Should be reimplemented in the subclasses where necessary.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )