etna.transforms.decomposition.MeanPerIntervalModel#

class MeanPerIntervalModel[source]#

Bases: StatisticsPerIntervalModel

MeanPerIntervalModel.

MeanPerIntervalModel is a shortcut for StatisticsPerIntervalModel that uses mean value as statistics function.

Init StatisticsPerIntervalModel.

Parameters:

statistics_function – function to compute statistics from series

Methods

fit(features, target, *args, **kwargs)

Fit statistics from given target.

predict(features, *args, **kwargs)

Build prediction from precomputed statistics.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

This class stores its __init__ parameters as attributes.

fit(features: ndarray, target: ndarray, *args, **kwargs) StatisticsPerIntervalModel[source]#

Fit statistics from given target.

Parameters:
  • features (ndarray) – features of the series, will be ignored

  • target (ndarray) – target to compute statistics for

Returns:

fitted StatisticsPerIntervalModel

Return type:

self

predict(features: ndarray, *args, **kwargs) ndarray[source]#

Build prediction from precomputed statistics.

Parameters:

features (ndarray) – features to build prediction for

Returns:

array of features len filled with statistics value

Return type:

prediction

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.