etna.models.DeadlineMovingAverageModel#

class DeadlineMovingAverageModel(window: int = 3, seasonality: str = 'month')[source]#

Bases: NonPredictionIntervalContextRequiredAbstractModel

Moving average model that uses exact previous dates to predict.

Notes

This model supports in-sample and out-of-sample prediction decomposition. Prediction components are corresponding target seasonal lags (monthly or annual) with weights of \(1/window\).

Initialize deadline moving average model.

Length of the context is equal to the number of window months or years, depending on the seasonality.

Parameters:
  • window (int) – Number of values taken for forecast for each point.

  • seasonality (str) – Only allowed values are “month” and “year”.

Methods

fit(ts)

Fit model.

forecast(ts, prediction_size[, ...])

Make autoregressive forecasts.

get_model()

Get internal model.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

predict(ts, prediction_size[, return_components])

Make predictions using true values as autoregression context (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

This class stores its __init__ parameters as attributes.

context_size

Upper bound to context size of the model.

fit(ts: TSDataset) DeadlineMovingAverageModel[source]#

Fit model.

Parameters:

ts (TSDataset) – Dataset with features

Returns:

Model after fit

Return type:

DeadlineMovingAverageModel

forecast(ts: TSDataset, prediction_size: int, return_components: bool = False) TSDataset[source]#

Make autoregressive forecasts.

Parameters:
  • ts (TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.

  • return_components (bool) – If True additionally returns forecast components

Returns:

Dataset with predictions

Raises:
  • NotImplementedError: – if return_components mode is used

  • ValueError: – if model isn’t fitted

  • ValueError: – if context isn’t big enough

  • ValueError: – if forecast context contains NaNs

Return type:

TSDataset

get_model() DeadlineMovingAverageModel[source]#

Get internal model.

Returns:

Itself

Return type:

DeadlineMovingAverageModel

classmethod load(path: Path) Self[source]#

Load an object.

Warning

This method uses dill module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.

Parameters:

path (Path) – Path to load object from.

Returns:

Loaded object.

Return type:

Self

params_to_tune() Dict[str, BaseDistribution][source]#

Get default grid for tuning hyperparameters.

This grid tunes window parameter. Other parameters are expected to be set by the user.

Returns:

Grid to tune.

Return type:

Dict[str, BaseDistribution]

predict(ts: TSDataset, prediction_size: int, return_components: bool = False) TSDataset[source]#

Make predictions using true values as autoregression context (teacher forcing).

Parameters:
  • ts (TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.

  • return_components (bool) – If True additionally returns prediction components

Returns:

Dataset with predictions

Raises:
  • NotImplementedError: – if return_components mode is used

  • ValueError: – if model isn’t fitted

  • ValueError: – if context isn’t big enough

  • ValueError: – if forecast context contains NaNs

Return type:

TSDataset

save(path: Path)[source]#

Save the object.

Parameters:

path (Path) – Path to save object to.

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.

property context_size: int[source]#

Upper bound to context size of the model.