etna.models.HoltModel#
- class HoltModel(exponential: bool = False, damped_trend: bool = False, initialization_method: str = 'estimated', initial_level: float | None = None, initial_trend: float | None = None, smoothing_level: float | None = None, smoothing_trend: float | None = None, damping_trend: float | None = None, **fit_kwargs)[source]#
Bases:
PerSegmentModelMixin
,NonPredictionIntervalContextIgnorantModelMixin
,NonPredictionIntervalContextIgnorantAbstractModel
Holt etna model.
This is a restricted version of
HoltWintersModel
. And it corresponds tostatsmodels.tsa.holtwinters.Holt
.Notes
The model
statsmodels.tsa.holtwinters.ExponentialSmoothing
is used in the implementation. In statsmodels package the modelstatsmodels.tsa.holtwinters.Holt
is implemented as a restricted version ofstatsmodels.tsa.holtwinters.ExponentialSmoothing
model.This model supports in-sample and out-of-sample prediction decomposition. Prediction components for Holt model are: level and trend. For in-sample decomposition, components are obtained directly from the fitted model. For out-of-sample, components estimated using an analytical form of the prediction function.
Init Holt model with given params.
- Parameters:
exponential (bool) –
Type of trend component. One of:
False: additive trend
True: multiplicative trend
damped_trend (bool) – Should the trend component be damped.
initialization_method (str) –
Method for initialize the recursions. One of:
None
’estimated’
’heuristic’
’legacy-heuristic’
’known’
None defaults to the pre-0.12 behavior where initial values are passed as part of
fit
. If any of the other values are passed, then the initial values must also be set when constructing the model. If ‘known’ initialization is used, theninitial_level
must be passed, as well asinitial_trend
andinitial_seasonal
if applicable. Default is ‘estimated’. “legacy-heuristic” uses the same values that were used in statsmodels 0.11 and earlier.initial_level (float | None) – The initial level component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.
initial_trend (float | None) – The initial trend component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.
smoothing_level (float | None) – The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value.
smoothing_trend (float | None) – The beta value of the Holt’s trend method, if the value is set then this value will be used as the value.
damping_trend (float | None) – The phi value of the damped method, if the value is set then this value will be used as the value.
fit_kwargs – Additional parameters for calling
statsmodels.tsa.holtwinters.ExponentialSmoothing.fit()
.
Methods
fit
(ts)Fit model.
forecast
(ts[, return_components])Make predictions.
Get internal models that are used inside etna class.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts[, return_components])Make predictions with using true values as autoregression context if possible (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Context size of the model.
- fit(ts: TSDataset) PerSegmentModelMixin [source]#
Fit model.
- Parameters:
ts (TSDataset) – Dataset with features
- Returns:
Model after fit
- Return type:
PerSegmentModelMixin
- get_model() Dict[str, Any] [source]#
Get internal models that are used inside etna class.
Internal model is a model that is used inside etna to forecast segments, e.g.
catboost.CatBoostRegressor
orsklearn.linear_model.Ridge
.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
- Returns:
Grid to tune.
- Return type:
- predict(ts: TSDataset, return_components: bool = False) TSDataset [source]#
Make predictions with using true values as autoregression context if possible (teacher forcing).
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )