etna.transforms.RobustScalerTransform#
- class RobustScalerTransform(in_column: str | List[str] | None = None, inplace: bool = True, out_column: str | None = None, with_centering: bool = True, with_scaling: bool = True, quantile_range: Tuple[float, float] = (25, 75), unit_variance: bool = False, mode: TransformMode | str = 'per-segment')[source]#
Bases:
SklearnTransform
Scale features using statistics that are robust to outliers.
Uses
sklearn.preprocessing.RobustScaler
inside.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Init RobustScalerPreprocess.
- Parameters:
in_column (str | List[str] | None) – columns to be scaled, if None - all columns will be scaled.
inplace (bool) – features are changed by scaled.
out_column (str | None) – base for the names of generated columns, uses
self.__repr__()
if not given.with_centering (bool) – if True, center the data before scaling.
with_scaling (bool) – if True, scale the data to interquartile range.
unit_variance (bool) –
If True, scale data so that normally distributed features have a variance of 1.
In general, if the difference between the x-values of q_max and q_min for a standard normal distribution is greater than 1, the dataset will be scaled down. If less than 1, the dataset will be scaled up.
mode (TransformMode | str) –
“macro” or “per-segment”, way to transform features over segments.
If “macro”, transforms features globally, gluing the corresponding ones for all segments.
If “per-segment”, transforms features for each segment separately.
- Raises:
ValueError: – if incorrect mode given
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) SklearnTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) –
- Return type:
SklearnTransform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- inverse_transform(ts: TSDataset) TSDataset [source]#
Inverse transform TSDataset.
Apply the _inverse_transform method.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
mode
,with_centering
,with_scaling
,unit_variance
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )