etna.transforms.EventTransform#
- class EventTransform(in_column: str, out_column: str, n_pre: int, n_post: int, mode: str = ImputerMode.binary)[source]#
Bases:
IrreversibleTransform
EventTransform marks days before and after event depending on
mode
.It creates two columns for future and past.
In ‘binary’ mode shows whether there will be or were events regarding current date.
In ‘distance’ mode shows distance to the previous and future events regarding current date. Computed as \(1 / x\), where x is a distance to the nearest event.
Examples
>>> from copy import deepcopy >>> import numpy as np >>> import pandas as pd >>> from etna.datasets import generate_const_df >>> from etna.datasets import TSDataset >>> from etna.transforms import EventTransform >>> >>> df = generate_const_df(start_time="2020-01-01", periods=5, freq="D", scale=1, n_segments=1) >>> df_exog = generate_const_df(start_time="2020-01-01", periods=10, freq="D", scale=1, n_segments=1) >>> df_exog.rename(columns={"target": "holiday"}, inplace=True) >>> df_exog["holiday"] = np.array([0, 0, 1, 0, 0, 0, 0, 1, 1, 0]) >>> df = TSDataset.to_dataset(df) >>> df_exog = TSDataset.to_dataset(df_exog) >>> ts = TSDataset(df, freq="D", df_exog=df_exog, known_future="all") >>> transform = EventTransform(in_column='holiday', out_column='holiday', n_pre=1, n_post=1) >>> transform.fit_transform(deepcopy(ts)) segment segment_0 feature holiday holiday_post holiday_pre target timestamp 2020-01-01 0 0.0 0.0 1.0 2020-01-02 0 0.0 1.0 1.0 2020-01-03 1 0.0 0.0 1.0 2020-01-04 0 1.0 0.0 1.0 2020-01-05 0 0.0 0.0 1.0
>>> transform = EventTransform(in_column='holiday', out_column='holiday', n_pre=2, n_post=2, mode='distance') >>> transform.fit_transform(deepcopy(ts)) segment segment_0 feature holiday holiday_post holiday_pre target timestamp 2020-01-01 0 0.0 0.5 1.0 2020-01-02 0 0.0 1.0 1.0 2020-01-03 1 0.0 0.0 1.0 2020-01-04 0 1.0 0.0 1.0 2020-01-05 0 0.5 0.0 1.0
Init EventTransform.
- Parameters:
in_column (str) – binary column with event indicator.
out_column (str) – base for creating out columns names for future and past - ‘{out_column}_pre’ and ‘{out_column}_post’
n_pre (int) – number of days before the event to react.
n_post (int) – number of days after the event to react.
mode (str) –
mode of marking events:
’binary’: whether there will be or were events regarding current date in binary type;
’distance’: distance to the previous and future events regarding current date;
- Raises:
ValueError: – Some
in_column
features are not binary.ValueError: –
n_pre
orn_post
values are less than one.NotImplementedError: – Given
mode
value is not supported.
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) EventTransform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) –
- Return type:
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
n_pre
,n_post
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )