etna.transforms.EmbeddingWindowTransform#
- class EmbeddingWindowTransform(in_columns: List[str], embedding_model: BaseEmbeddingModel, encoding_params: Dict[str, Any] | None = None, training_params: Dict[str, Any] | None = None, out_column: str = 'embedding_window')[source]#
Bases:
IrreversibleTransform
Create the embedding features for each timestamp using embedding model.
Init EmbeddingWindowTransform.
- Parameters:
in_columns (List[str]) – Columns to use for creating embeddings
embedding_model (BaseEmbeddingModel) – Model to create the embeddings
encoding_params (Dict[str, Any] | None) – Parameters to use during encoding. Parameters for corresponding models can be found at embedding section.
training_params (Dict[str, Any] | None) – Parameters to use during training. Parameters for corresponding models can be found at embedding section.
out_column (str) – Prefix for output columns, the output columns format is ‘{out_column}_{i}’
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) Transform [source]#
Fit the transform.
- Parameters:
ts (TSDataset) – Dataset to fit the transform on.
- Returns:
The fitted transform instance.
- Return type:
Transform
- fit_transform(ts: TSDataset) TSDataset [source]#
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- classmethod load(path: Path) EmbeddingWindowTransform [source]#
Load an object.
- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns:
Empty grid.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )