etna.models.nn.deepstate.DaylySeasonalitySSM#
- class DaylySeasonalitySSM[source]#
Bases:
SeasonalitySSM
Class for Daily Seasonality State Space Model.
Note
This class requires
torch
extension to be installed. Read more about this at installation page.Create instance of SeasonalitySSM.
- Parameters:
num_seasons – Number of seasons in the considered seasonality period.
Methods
emission_coeff
(datetime_index)Emission coefficient matrix.
generate_datetime_index
(timestamps)Generate datetime index to use in the State Space Model.
Generate datetime index to use in the State Space Model.
innovation_coeff
(datetime_index)Innovation coefficient matrix.
Dimension of the latent space.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transition_coeff
(datetime_index)Transition coefficient matrix.
Attributes
This class stores its
__init__
parameters as attributes.- generate_datetime_index(timestamps: ndarray) ndarray [source]#
Generate datetime index to use in the State Space Model.
- get_timestamp_transform(x: Timestamp)[source]#
Generate datetime index to use in the State Space Model.
- Parameters:
x (Timestamp) – timestamp
- Returns:
Datetime index for State Space Model.
- latent_dim() int [source]#
Dimension of the latent space.
- Returns:
Dimension of the latent space.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )