etna.models.nn.TFTModel#
- class TFTModel(*args, **kwargs)[source]#
Bases:
_DeepCopyMixin
,PytorchForecastingMixin
,SavePytorchForecastingMixin
,PredictionIntervalContextRequiredAbstractModel
Wrapper for
pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer
.Note
This model requires
torch
extension to be installed. Read more about this at installation page.Notes
We save
pytorch_forecasting.data.timeseries.TimeSeriesDataSet
in instance to use it in the model. It`s not right pattern of using Transforms and TSDataset.Initialize TFT wrapper.
- Parameters:
decoder_length – Decoder length.
encoder_length (int) – Encoder length.
dataset_builder (etna.models.nn.utils.PytorchForecastingDatasetBuilder) – Dataset builder for PytorchForecasting.
train_batch_size (int) – Train batch size.
test_batch_size (int) – Test batch size.
lr – Learning rate.
hidden_size – Hidden size of network which can range from 8 to 512.
lstm_layers – Number of LSTM layers.
attention_head_size – Number of attention heads.
dropout – Dropout rate.
hidden_continuous_size – Hidden size for processing continuous variables.
loss – Loss function taking prediction and targets. Defaults to
pytorch_forecasting.metrics.QuantileLoss
.trainer_kwargs – Additional arguments for pytorch_lightning Trainer.
quantiles_kwargs – Additional arguments for computing quantiles, look at
to_quantiles()
method for your loss.
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make predictions.
Get internal model that is used inside etna class.
load
(path[, ts])Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, ...])Make predictions.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Context size of the model.
trainer_params
dataset_builder
train_batch_size
test_batch_size
encoder_length
trainer
- fit(ts: TSDataset)[source]#
Fit model.
- Parameters:
ts (TSDataset) – TSDataset to fit.
- Returns:
model
- forecast(ts: TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions.
This method will make autoregressive predictions.
- Parameters:
ts (TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns forecast components
- Returns:
TSDataset with predictions.
- Return type:
- get_model() Any [source]#
Get internal model that is used inside etna class.
Model is the instance of
pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer
.- Returns:
Internal model
- Return type:
- classmethod load(path: Path, ts: TSDataset | None = None) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes parameters:
hidden_size
,lstm_layers
,dropout
,attention_head_size
,lr
. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- predict(ts: TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) TSDataset [source]#
Make predictions.
This method will make predictions using true values instead of predicted on a previous step. It can be useful for making in-sample forecasts.
- Parameters:
ts (TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns prediction components
- Returns:
TSDataset with predictions.
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )