etna.models.SeasonalMovingAverageModel#
- class SeasonalMovingAverageModel(window: int = 5, seasonality: int = 7)[source]#
Bases:
NonPredictionIntervalContextRequiredAbstractModel
Seasonal moving average.
\[y_{t} = \frac{\sum_{i=1}^{n} y_{t-is} }{n},\]where \(s\) is seasonality, \(n\) is window size (how many history values are taken for forecast).
Notes
This model supports in-sample and out-of-sample prediction decomposition. Prediction components are corresponding target lags with weights of \(1/window\).
Initialize seasonal moving average model.
Length of the context is
window * seasonality
.- Parameters:
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make autoregressive forecasts.
Get internal model.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, return_components])Make predictions using true values as autoregression context (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Context size of the model.
- fit(ts: TSDataset) SeasonalMovingAverageModel [source]#
Fit model.
For this model, fit does nothing.
- Parameters:
ts (TSDataset) – Dataset with features
- Returns:
Model after fit
- Return type:
- forecast(ts: TSDataset, prediction_size: int, return_components: bool = False) TSDataset [source]#
Make autoregressive forecasts.
- Parameters:
- Returns:
Dataset with predictions
- Raises:
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type:
- get_model() SeasonalMovingAverageModel [source]#
Get internal model.
- Returns:
Itself
- Return type:
- classmethod load(path: Path) Self [source]#
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters:
path (Path) – Path to load object from.
- Returns:
Loaded object.
- Return type:
Self
- params_to_tune() Dict[str, BaseDistribution] [source]#
Get default grid for tuning hyperparameters.
This grid tunes
window
parameter. Other parameters are expected to be set by the user.- Returns:
Grid to tune.
- Return type:
- predict(ts: TSDataset, prediction_size: int, return_components: bool = False) TSDataset [source]#
Make predictions using true values as autoregression context (teacher forcing).
- Parameters:
- Returns:
Dataset with predictions
- Raises:
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type:
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )