etna.metrics.Width#
- class Width(quantiles: Tuple[float, float] | None = None, mode: str = MetricAggregationMode.per_segment, upper_name: str | None = None, lower_name: str | None = None, **kwargs)[source]#
Bases:
Metric
,_IntervalsMetricMixin
Mean width of prediction intervals.
\[Width(y\_true, y\_pred) = \frac{\sum_{i=1}^{n}\mid y\_pred_i^{upper\_quantile} - y\_pred_i^{lower\_quantile} \mid}{n}\]Notes
Works just if quantiles presented in
y_pred
.When
quantiles
,upper_name
andlower_name
all set toNone
then 0.025 and 0.975 quantiles will be used.Init metric.
- Parameters:
quantiles (Tuple[float, float] | None) – lower and upper quantiles
mode ('macro' or 'per-segment') – metrics aggregation mode
upper_name (str | None) – name of column with upper border of the interval
lower_name (str | None) – name of column with lower border of the interval
kwargs – metric’s computation arguments
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
__call__
(y_true, y_pred)Compute metric's value with y_true and y_pred.
Attributes
This class stores its
__init__
parameters as attributes.Whether higher metric value is better.
Name of the metric for representation.
- __call__(y_true: TSDataset, y_pred: TSDataset) float | Dict[str, float] [source]#
Compute metric’s value with y_true and y_pred.
Notes
Note that if y_true and y_pred are not sorted Metric will sort it anyway
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )