etna.loggers.WandbLogger#
- class WandbLogger(name: str | None = None, entity: str | None = None, project: str | None = None, job_type: str | None = None, group: str | None = None, tags: List[str] | None = None, plot: bool = True, table: bool = True, name_prefix: str = '', config: Dict[str, Any] | None = None, log_model: bool = False)[source]#
Bases:
BaseLogger
Weights&Biases logger.
Note
This logger requires
wandb
extension to be installed. Read more about this at installation page.Create instance of WandbLogger.
- Parameters:
name (str | None) – Wandb run name.
entity (str | None) – An entity is a username or team name where you’re sending runs.
project (str | None) – The name of the project where you’re sending the new run
job_type (str | None) – Specify the type of run, which is useful when you’re grouping runs together into larger experiments using group.
group (str | None) – Specify a group to organize individual runs into a larger experiment.
tags (List[str] | None) – A list of strings, which will populate the list of tags on this run in the UI.
plot (bool) – Indicator for making and sending plots.
table (bool) – Indicator for making and sending tables.
name_prefix (str) – Prefix for the name field.
config (Dict[str, Any] | None) – This sets wandb.config, a dictionary-like object for saving inputs to your job, like hyperparameters for a model or settings for a data preprocessing job.
log_model (bool) –
Log checkpoints created by
pytorch_lightning.callbacks.ModelCheckpoint
as W&B artifacts. latest and best aliases are automatically set.if
log_model == 'all'
, checkpoints are logged during training.if
log_model == True
, checkpoints are logged at the end of training, except whenpytorch_lightning.callbacks.ModelCheckpoint.save_top_k==-1
which also logs every checkpoint during training.if
log_model == False
(default), no checkpoint is logged.
Methods
Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
Reinit experiment.
set_params
(**params)Return new object instance with modified parameters.
start_experiment
([job_type, group])Start experiment.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Init experiment.
Pytorch lightning loggers.
- log(msg: str | Dict[str, Any], **kwargs)[source]#
Log any event.
e.g. “Fitted segment segment_name” to stderr output.
- Parameters:
Notes
We log dictionary to wandb only.
- log_backtest_metrics(ts: TSDataset, metrics_df: DataFrame, forecast_df: DataFrame, fold_info_df: DataFrame)[source]#
Write metrics to logger.
- log_backtest_run(metrics: DataFrame, forecast: DataFrame, test: DataFrame)[source]#
Backtest metrics from one fold to logger.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )