etna.loggers.ConsoleLogger#
- class ConsoleLogger(table: bool = True)[source]#
Bases:
BaseLogger
Log any events and metrics to stderr output. Uses loguru.
Create instance of ConsoleLogger.
- Parameters:
table (bool) – Indicator for writing tables to the console
Methods
finish_experiment
(*args, **kwargs)Finish experiment.
log
(msg, **kwargs)Log any event.
log_backtest_metrics
(ts, metrics_df, ...)Write metrics to logger.
log_backtest_run
(metrics, forecast, test)Backtest metrics from one fold to logger.
set_params
(**params)Return new object instance with modified parameters.
start_experiment
(*args, **kwargs)Start experiment.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.Pytorch lightning loggers.
- log(msg: str | Dict[str, Any], **kwargs)[source]#
Log any event.
e.g. “Fitted segment segment_name” to stderr output.
- log_backtest_metrics(ts: TSDataset, metrics_df: DataFrame, forecast_df: DataFrame, fold_info_df: DataFrame)[source]#
Write metrics to logger.
- Parameters:
Notes
The result of logging will be different for
aggregate_metrics=True
andaggregate_metrics=False
options inbacktest()
.
- log_backtest_run(metrics: DataFrame, forecast: DataFrame, test: DataFrame)[source]#
Backtest metrics from one fold to logger.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )