etna.clustering.DistanceMatrix#
- class DistanceMatrix(distance: Distance)[source]#
Bases:
BaseMixin
DistanceMatrix computes distance matrix from TSDataset.
Init DistanceMatrix.
- Parameters:
distance (Distance) – class for distance measurement
Methods
fit
(ts)Fit distance matrix: get timeseries from ts and compute pairwise distances.
fit_predict
(ts)Compute distance matrix and return it.
predict
()Get distance matrix.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
This class stores its
__init__
parameters as attributes.- fit(ts: TSDataset) DistanceMatrix [source]#
Fit distance matrix: get timeseries from ts and compute pairwise distances.
- Parameters:
ts (TSDataset) – TSDataset with timeseries
- Returns:
fitted DistanceMatrix object
- Return type:
self
- fit_predict(ts: TSDataset) ndarray [source]#
Compute distance matrix and return it.
- Parameters:
ts (TSDataset) – TSDataset with timeseries to compute matrix with
- Returns:
2D array with distances between series
- Return type:
np.ndarray
- predict() ndarray [source]#
Get distance matrix.
- Returns:
2D array with distances between series
- Return type:
np.ndarray
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )