etna.analysis.get_anomalies_prediction_interval#
- get_anomalies_prediction_interval(ts: TSDataset, model: Type[ProphetModel] | Type[SARIMAXModel], interval_width: float = 0.95, in_column: str = 'target', index_only: bool = True, **model_params) Dict[str, List[Timestamp] | List[int] | Series] [source]#
Get point outliers in time series using prediction intervals (estimation model-based method).
Outliers are all points out of the prediction interval predicted with the model.
- Parameters:
ts (TSDataset) – dataset with timeseries data(should contains all the necessary features).
model (Type[ProphetModel] | Type[SARIMAXModel]) – model for prediction interval estimation.
interval_width (float) – the significance level for the prediction interval. By default a 95% prediction interval is taken.
in_column (str) –
column to analyze
If it is set to “target”, then all data will be used for prediction.
Otherwise, only column data will be used.
index_only (bool) – whether to return only outliers indices. If False will return outliers series
- Returns:
dict of outliers in format {segment: [outliers_timestamps]}.
- Return type:
Notes
For not “target” column only column data will be used for learning.