etna.analysis.get_anomalies_mad#
- get_anomalies_mad(ts: TSDataset, in_column: str = 'target', window_size: int = 10, stride: int = 1, mad_scale: float = 3, trend: bool = False, seasonality: bool = False, period: int | None = None, stl_params: Dict[str, Any] | None = None, index_only: bool = True) Dict[str, List[Timestamp] | List[int] | Series] [source]#
Get point outliers in time series using median absolute deviation. Detects outliers in a row that fall out of range: [median - mad_scale * mad; median + mad_scale * mad]
- Parameters:
ts (TSDataset) – TSDataset with timeseries data
in_column (str) – name of the column in which the anomaly is searching
window_size (int) – number of points in the window
stride (int) – offset between neighboring windows.
mad_scale (float) – scaling parameter of the estimated interval.
trend (bool) – whether to remove trend from the series.
seasonality (bool) – whether to remove seasonality from the series
period (int | None) – periodicity of the sequence for STL.
stl_params (Dict[str, Any] | None) – other parameters for STL. See
statsmodels.tsa.seasonal.STL
index_only (bool) – whether to return only outliers indices. If False will return outliers series
- Returns:
dict of outliers in format {segment: [outliers_timestamps]}
- Return type: