etna.analysis.ModelRelevanceTable#
- class ModelRelevanceTable[source]#
Bases:
RelevanceTable
ModelRelevanceTable builds feature relevance table using feature relevance values obtained from model.
Init RelevanceTable.
- Parameters:
greater_is_better – bool flag, if True the biggest value in relevance table corresponds to the most important exog feature
- __call__(df: DataFrame, df_exog: DataFrame, return_ranks: bool = False, **kwargs) DataFrame [source]#
Compute feature relevance table with
get_model_relevance_table()
method.For each series in
df
compute relevance of corresponding series indf_exog
.- Parameters:
- Returns:
dataframe of shape n_segment x n_exog_series,
relevance_table[i][j]
contains relevance of j-th df_exog series to i-th df series- Return type:
relevance table
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )