Analysis#

API details#

See the API documentation for further details on available analysis tools:

Decomposition analysis utilities:

find_change_points(ts, in_column, ...)

Find trend change points using ruptures models.

plot_change_points_interactive(ts, ...[, ...])

Plot a time series with indicated change points.

plot_time_series_with_change_points(ts, ...)

Plot segments with their trend change points.

plot_trend(ts, trend_transform[, segments, ...])

Plot series and trend from trend transform for this series.

seasonal_plot(ts[, freq, cycle, alignment, ...])

Plot each season on one canvas for each segment.

stl_plot(ts, period[, segments, ...])

Plot STL decomposition for segments.

SeasonalPlotAggregation(value)

Enum for types of aggregation in a seasonal plot.

SeasonalPlotAlignment(value)

Enum for types of alignment in a seasonal plot.

SeasonalPlotCycle(value)

Enum for types of cycles in a seasonal plot.

EDA utilities:

acf_plot(ts[, n_segments, lags, partial, ...])

Autocorrelation and partial autocorrelation plot for multiple timeseries.

cross_corr_plot(ts[, n_segments, maxlags, ...])

Cross-correlation plot between multiple timeseries.

distribution_plot(ts[, n_segments, ...])

Distribution of z-values grouped by segments and time frequency.

get_correlation_matrix(ts[, columns, ...])

Compute pairwise correlation of timeseries for selected segments.

plot_clusters(ts, segment2cluster[, ...])

Plot clusters [with centroids].

plot_correlation_matrix(ts[, columns, ...])

Plot pairwise correlation heatmap for selected segments.

plot_holidays(ts, holidays[, segments, ...])

Plot holidays for segments.

plot_imputation(ts, imputer[, segments, ...])

Plot the result of imputation by a given imputer.

plot_periodogram(ts, period[, ...])

Plot the periodogram using scipy.signal.periodogram().

Feature selection analysis utilities:

plot_feature_relevance(ts, relevance_table)

Plot relevance of the features.

ModelRelevanceTable()

ModelRelevanceTable builds feature relevance table using feature relevance values obtained from model.

RelevanceTable(greater_is_better)

Abstract class for relevance table computation.

StatisticsRelevanceTable()

StatisticsRelevanceTable builds feature relevance table with tsfresh statistics.

get_model_relevance_table(df, df_exog, model)

Calculate relevance table with feature importance from model.

get_statistics_relevance_table(df, df_exog)

Calculate relevance table with p-values from tsfresh.

AggregationMode(value)

Enum for different aggregation modes.

Forecast analysis utilities:

get_residuals(forecast_df, ts)

Get residuals for further analysis.

metric_per_segment_distribution_plot(...[, ...])

Plot per-segment metrics distribution.

plot_backtest(forecast_df, ts[, segments, ...])

Plot targets and forecast for backtest pipeline.

plot_backtest_interactive(forecast_df, ts[, ...])

Plot targets and forecast for backtest pipeline using plotly.

plot_forecast(forecast_ts[, test_ts, ...])

Plot of prediction for forecast pipeline.

plot_forecast_decomposition(forecast_ts[, ...])

Plot of prediction and its components.

plot_metric_per_segment(metrics_df, metric_name)

Plot barplot with per-segment metrics.

plot_residuals(forecast_df, ts[, feature, ...])

Plot residuals for predictions from backtest against some feature.

prediction_actual_scatter_plot(forecast_df, ts)

Plot scatter plot with forecasted/actual values for segments.

qq_plot(residuals_ts[, qq_plot_params, ...])

Plot Q-Q plots for segments.

MetricPlotType(value)

Enum for types of plot in metric_per_segment_distribution_plot().

PerFoldAggregation(value)

Enum for types of aggregation in a metric per-segment plot.

Outliers analysis utilities:

plot_anomalies(ts, anomaly_dict[, ...])

Plot a time series with indicated anomalies.

plot_anomalies_interactive(ts, segment, ...)

Plot a time series with indicated anomalies.

get_anomalies_density(ts[, in_column, ...])

Compute outliers according to density rule.

get_anomalies_hist(ts[, in_column, ...])

Get point outliers in time series using histogram model.

get_anomalies_median(ts[, in_column, ...])

Get point outliers in time series using median model (estimation model-based method).

get_anomalies_prediction_interval(ts, model)

Get point outliers in time series using prediction intervals (estimation model-based method).

get_anomalies_iqr(ts[, in_column, ...])

Get point outliers in time series using IQR statistics, estimated on a rolling window.

get_anomalies_isolation_forest(ts[, ...])

Get point outliers in time series using Isolation Forest algorithm.

get_anomalies_mad(ts[, in_column, ...])

Get point outliers in time series using median absolute deviation.