etna.transforms.OneSegmentTransform#

class OneSegmentTransform[source]#

Bases: ABC, BaseMixin

Base class to create one segment transforms to apply to data.

Methods

fit(df)

Fit the transform.

fit_transform(df)

Fit and transform Dataframe.

inverse_transform(df)

Inverse transform Dataframe.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(df)

Transform dataframe.

Attributes

This class stores its __init__ parameters as attributes.

abstract fit(df: DataFrame)[source]#

Fit the transform.

Should be implemented by user.

Parameters:

df (DataFrame) – Dataframe in etna long format.

fit_transform(df: DataFrame) DataFrame[source]#

Fit and transform Dataframe.

May be reimplemented. But it is not recommended.

Parameters:

df (DataFrame) – Dataframe in etna long format to transform.

Returns:

Transformed Dataframe.

Return type:

DataFrame

abstract inverse_transform(df: DataFrame) DataFrame[source]#

Inverse transform Dataframe.

Should be reimplemented in the subclasses where necessary.

Parameters:

df (DataFrame) – Dataframe in etna long format to be inverse transformed.

Returns:

Dataframe after applying inverse transformation.

Return type:

DataFrame

set_params(**params: dict) Self[source]#

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters:

**params (dict) – Estimator parameters

Returns:

New instance with changed parameters

Return type:

Self

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()[source]#

Collect all information about etna object in dict.

abstract transform(df: DataFrame) DataFrame[source]#

Transform dataframe.

Should be implemented by user

Parameters:

df (DataFrame) – Dataframe in etna long format.

Returns:

Transformed Dataframe in etna long format.

Return type:

DataFrame